ArborSim: Articulated, branching, OpenSim routing for constructing models of multi-jointed appendages with complex muscle-tendon architecture
Computational models of musculoskeletal systems are essential tools for understanding how muscles, tendons, bones, and actuation signals generate motion. In particular, the OpenSim family of models has facilitated a wide range of studies on diverse human motions, clinical studies of gait, and even non-human locomotion. However, biological structures with many joints, such as fingers, necks, tails, and spines, have been a longstanding challenge to the OpenSim modeling community, especially because these structures comprise numerous bones and are frequently actuated by extrinsic muscles that span multiple joints---often more than three---and act through a complex network of branching tendons. Existing model building software, typically optimized for limb structures, makes it difficult to build OpenSim models that accurately reflect these intricacies. Here, we introduce ArborSim, customized software that efficiently creates musculoskeletal models of highly jointed structures and can build branched muscle-tendon architectures.
We used ArborSim to construct toy models of articulated structures to determine which morphological features make a structure most sensitive to branching. By comparing the joint kinematics of models constructed with branched and parallel muscle-tendon units, we found that the number of tendon branches and the number of joints between branches are most sensitive to branching modeling method---notably, the differences between these models showed no predictable pattern with increased complexity.As the proportion of muscle increased, the kinematic differences between branched and parallel models units also increased. Our findings suggest that stress and strain interactions between distal tendon branches and proximal tendon and muscle greatly affect the overall kinematics of a musculoskeletal system. By incorporating complex muscle-tendon branching into OpenSim models using ArborSim, we can gain deeper insight into the interactions between the axial and appendicular skeleton, model the evolution and function of diverse animal tails, and understand the mechanics of more complex motions and tasks.
Bibtex
@article{Fu2024, title=: Articulated, branching, OpenSim routing for constructing models of multi-jointed appendages with complex muscle-tendon architecture}}, author = {Fu, Xun and Withers, Jack and Juri A. Miyamae and Moore, Talia Y.}, journal = {PLOS Computational Biology}, year={\emph{in review}} }